관심표준 등록 : 표준업데이트 시 알림을 받을 수 있습니다.
PDF : 직접 파일 다운로드 및 인쇄 (마이페이지 확인)
PRINT : 인쇄본 우편발송, 2~3일 소요(PDF파일 미제공)
분야 | |
---|---|
적용범위 | 1.1?The test methods described in this standard measure the axial deflection of an individual vertical or inclined deep foundation element or group of elements when loaded in static axial tension. These methods apply to all types of deep foundations, or deep foundation systems, as they are practical to test. The individual components of which are referred to herein as elements that function as, or in a manner similar to, drilled shafts; cast-in-place piles (augered cast-in-place piles, barrettes, and slurry walls); driven piles, such as pre-cast concrete piles, timber piles or steel sections (steel pipes or wide flange beams); or any number of other element types, regardless of their method of installation. Although the test methods may be used for testing single elements or element groups, the test results may not represent the long-term performance of the entire deep foundation system. A summary of the test methods is contained in Section 4. 1.2?This standard provides minimum requirements for testing deep foundation elements under static axial tensile load. Project plans, specifications, provisions, or any combination thereof may provide additional requirements and procedures as needed to satisfy the objectives of a particular test program. The engineer in charge of the foundation design, referred to herein as the foundation engineer, shall approve any deviations, deletions, or additions to the requirements of this standard. (Exception: the test load applies to the testing apparatus shall not exceed the rated capacity established by the engineer who designed the testing apparatus.) 1.3?Apparatus and procedures herein designated “optional” may produce different test results and may be used only when approved by the foundation engineer. The word “shall” indicates a mandatory provision, and the word “should” indicates a recommended or advisory provision. Imperative sentences indicate mandatory provisions. 1.4?The foundation engineer should interpret the test results obtained from the procedures of this standard to predict the actual performance and adequacy of elements used in the constructed foundation. 1.5?An engineer qualified to perform such work shall design and approve all loading apparatus, loaded members, and support frames. The foundation engineer shall design or specify the test procedures. The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered requirements of the standard. This standard also includes illustrations and appendices intended only for explanatory or advisory use. 1.6?Units?The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. 1.7?The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound [lbf] represents a unit of force [weight], while the unit for mass is slug. The rationalized slug unit is not given, unless dynamic [F=ma] calculations are involved. 1.8?All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026. The procedure used to specify how data are collected, recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering data. 1.9?The method used to specify how data are collected, calculated, or recorded in this standard is not directly related to the accuracy to which the data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope. 1.10?This standard offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this standard may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process. 1.11?This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.12?This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. |
국제분류(ICS)코드 | |
페이지수 | 14 |
Edition | 22 |
No. | 표준번호 | 표준명 | 발행일 | 상태 |
---|---|---|---|---|
1 | ASTM D3689/D3689M-22 | Standard Test Methods for Deep Foundation Elements Under Static Axial Tensile Load | 2022-01-01 | 표준 |
2 | ASTM D3689/D3689M-22 REDLINE | Standard Test Methods for Deep Foundation Elements Under Static Axial Tensile Load | 2022-01-01 | 표준 |
3 | ASTM D3689/D3689M-07(2013)e1 | Standard Test Methods for Deep Foundations Under Static Axial Tensile Load | 2013-06-15 | 구판 |
관련상품이 존재하지 않습니다.
함께 구입한 상품이 존재하지 않습니다.
IEC TS 63134:2020 - Active assisted living (AAL) use cases 상세보기
IEC 60034-5:2020 RLV - Rotating electrical machines - Part 5: Degrees of protection provided by the integral design of rotating electrical machines (IP code) - Classification 상세보기
KS B ISO TS 25740-1 - 에스컬레이터 및 무빙워크에 대한 안전요건 — 제1부: 세계공통 필수 안전요건(GESRs) 상세보기
KS B ISO TS 8100-21 - 승객 및 화물 운송용 엘리베이터 —제21부: 세계공통 필수안전요건(GESRs)을 충족하는 세계공통 안전 파라미터(GSPs) 상세보기
KS C IEC TS 62872 - 산업 시설과 스마트 그리드 사이의 산업 공정 측정, 제어 및 자동화 시스템 인터페이스 상세보기