관심표준 등록 : 표준업데이트 시 알림을 받을 수 있습니다.
PDF : 직접 파일 다운로드 및 인쇄 (마이페이지 확인)
PRINT : 인쇄본 우편발송, 2~3일 소요(PDF파일 미제공)
분야 | 06.01 : 페인트-화학적, 물리적, 광학적특성 시험; 현상 |
---|---|
적용범위 | 1.1 This practice describes procedures for determining the amount and angular distribution of optical scatter from a surface. In particular it focuses on measurement of the bidirectional scattering distribution function (BSDF). BSDF is a convenient and well accepted means of expressing optical scatter levels for many purposes. It is often referred to as the bidirectional reflectance distribution function (BRDF) when considering reflective scatter or the bidirectional transmittance distribution function (BTDF) when considering transmissive scatter. 1.2 The BSDF is a fundamental description of the appearance of a sample, and many other appearance attributes (such as gloss, haze, and color) can be represented in terms of integrals of the BSDF over specific geometric and spectral conditions. 1.3 This practice also presents alternative ways of presenting angle-resolved optical scatter results, including directional reflectance factor, directional transmittance factor, and differential scattering function. 1.4 This practice applies to BSDF measurements on opaque, translucent, or transparent samples. 1.5 The wavelengths for which this practice applies include the ultraviolet, visible, and infrared regions. Difficulty in obtaining appropriate sources, detectors, and low scatter optics complicates its practical application at wavelengths less than about 0.2 µm (200 nm). Diffraction effects start to become important for wavelengths greater than 15 µm (15 000 nm), which complicate its practical application at longer wavelengths. Measurements pertaining to visual appearance are restricted to the visible wavelength region. 1.6 This practice does not apply to materials exhibiting significant fluorescence. 1.7 This practice applies to flat or curved samples of arbitrary shape. However, only a flat sample is addressed in the discussion and examples. It is the user’s responsibility to define an appropriate sample coordinate system to specify the measurement location on the sample surface and appropriate beam properties for samples that are not flat. 1.8 This practice does not provide a method for ascribing the measured BSDF to any scattering mechanism or source. 1.9 This practice does not provide a method to extrapolate data from one wavelength, scattering geometry, sample location, or polarization to any other wavelength, scattering geometry, sample location, or polarization. The user must make measurements at the wavelengths, scattering geometries, sample locations, and polarizations that are of interest to his or her application. 1.10 Any parameter can be varied in a measurement sequence. Parameters that remain constant during a measurement sequence are reported as either header information in the tabulated data set or in an associated document. 1.11 The apparatus and measurement procedure are generic, so that specific instruments are neither excluded nor implied in the use of this practice. 1.12 For measurements performed for the semiconductor industry, the operator should consult Guide SEMI ME 1392. 1.13 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.14 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. |
국제분류(ICS)코드 | 17.180.30 : 광학 측정 기구 |
페이지수 | 14 |
Edition | 19 |
No. | 표준번호 | 표준명 | 발행일 | 상태 |
---|---|---|---|---|
1 | ASTM E2387-19 | Standard Practice for Goniometric Optical Scatter Measurements | 2019-11-01 | 표준 |
2 | ASTM E2387-19 REDLINE | Standard Practice for Goniometric Optical Scatter Measurements | 2019-11-01 | 표준 |
3 | ASTM E2387-05(2011) | Standard Practice for Goniometric Optical Scatter Measurements | 2011-07-01 | 구판 |
4 | ASTM E2387-05 | Standard Practice for Goniometric Optical Scatter Measurements | 2005-01-01 | 구판 |
관련상품이 존재하지 않습니다.
IEC TS 63134:2020 - Active assisted living (AAL) use cases 상세보기
IEC 60034-5:2020 RLV - Rotating electrical machines - Part 5: Degrees of protection provided by the integral design of rotating electrical machines (IP code) - Classification 상세보기
KS B ISO TS 25740-1 - 에스컬레이터 및 무빙워크에 대한 안전요건 — 제1부: 세계공통 필수 안전요건(GESRs) 상세보기
KS B ISO TS 8100-21 - 승객 및 화물 운송용 엘리베이터 —제21부: 세계공통 필수안전요건(GESRs)을 충족하는 세계공통 안전 파라미터(GSPs) 상세보기
KS C IEC TS 62872 - 산업 시설과 스마트 그리드 사이의 산업 공정 측정, 제어 및 자동화 시스템 인터페이스 상세보기