관심표준 등록 : 표준업데이트 시 알림을 받을 수 있습니다.
PDF : 직접 파일 다운로드 및 인쇄 (마이페이지 확인)
PRINT : 인쇄본 우편발송, 2~3일 소요(PDF파일 미제공)
분야 | 04.08 : 토양, 석재 (Ⅰ) |
---|---|
적용범위 | 1.1 These test methods cover the laboratory determination of the water (moisture) content by mass of soil, rock, and similar materials where the reduction in mass by drying is due to loss of water except as noted in 1.4, 1.5, and 1.8. For simplicity, the word “material” shall refer to soil, rock or aggregate whichever is most applicable. 1.2 Some disciplines, such as soil science, need to determine water content on the basis of volume. Such determinations are beyond the scope of this test method. 1.3 The water content of a material is the ratio of the mass of water contained in the pore spaces of soil or rock material, to the solid mass of particles, expressed as a percentage. 1.4 The term “solid material” as used in geotechnical engineering is typically assumed to mean naturally occurring mineral particles of soil and rock that are not readily soluble in water. Therefore, the water content of materials containing extraneous matter (such as cement etc.) may require special treatment or a qualified definition of water content. In addition, some organic materials may be decomposed by oven drying at the standard drying temperature for this method (110 ± 5°C). Materials containing gypsum (calcium sulfate dihydrate) or other compounds having significant amounts of hydrated water, may present a special problem as this material slowly dehydrates at the standard drying temperature (110 ± 5°C) and at very low relative humidity, forming a compound (such as calcium sulfate hemihydrate) that is not normally present in natural materials except in some desert soils. In order to reduce the degree of dehydration of gypsum in those materials containing gypsum or to reduce decomposition in highly/fibrous organic soils, it may be desirable to dry the materials at 60°C or in a desiccator at room temperature. When a drying temperature is used which is different from the standard drying temperature as defined by this test method, the resulting water content may be different from the standard water content determined at the standard drying temperature of 110 ± 5°C. Note 1: Test Method D2974 provides an alternate procedure for determining water content of peat materials. 1.5 Materials containing water with substantial amounts of soluble solids (such as salt in the case of marine sediments) when tested by this method will give a mass of solids that includes the previously soluble dissolved solids. These materials require special treatment to remove or account for the presence of precipitated solids in the dry mass of the specimen, or a qualified definition of water content must be used. For example, see Test Method D4542 regarding information on marine sediments. 1.6 This test standard requires several hours for proper drying of the water content specimen. Test Methods D4643, D4944 and D4959 provide less time-consuming processes for determining water content. See Gilbert2 for details on the background of Test Method D4643. 1.7 Two test methods are provided in this standard. The methods differ in the significant digits reported and the size of the specimen (mass) required. The method to be used may be specified by the requesting authority; otherwise Method A shall be performed. 1.7.1 Method A—The water content by mass is recorded to the nearest 1 %. For cases of dispute, Method A is the referee method. 1.7.2 Method B—The water content by mass is recorded to the nearest 0.1 %. 1.8 This standard requires the drying of material in an oven. If the material being dried is contaminated with certain chemicals that may react violently or emit hazardous gases when heated, health and safety hazards may exist. Therefore, this standard should not be used in determining the water content of contaminated soils unless adequate health and safety precautions are exercised. 1.9 Units—The values stated in SI units shall be regarded as standard except the Alternative Sieve Sizes listed in Table 1 are used. No other units of measurement are included in this test method. 1.10 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method. 1.10.1 This is especially important if the water content will be used to calculate other relationships such as moist mass to dry mass or vice versa, wet unit weight to dry unit weight or vice versa, and total density to dry density or vice versa. For example, if four significant digits are required in any of the above calculations, then the water content must be recorded to the nearest 0.1 %. This occurs since 1 plus the water content (not in percent) will have four significant digits regardless of what the value of the water content is; that is, 1 plus 0.1/100 = 1.001, a value with four significant digits. While, if three significant digits are acceptable, then the water content can be recorded to the nearest 1 %. 1.10.2 If water content data is to be used to calculate other relationships, such as moist or dry mass, wet or dry unit weight or total or dry density, then the specimen mass up to 200 g must be determined using a balance accurate to 0.01 g. 1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. |
국제분류(ICS)코드 | 93.020 : 토공. 굴착. 기초건설. 갱내작업 |
페이지수 | 7 |
Edition | 19 |
No. | 표준번호 | 표준명 | 발행일 | 상태 |
---|---|---|---|---|
1 | ASTM D2216-19 | Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass | 2019-03-01 | 표준 |
2 | ASTM D2216-19 REDLINE | Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass | 2019-03-01 | 표준 |
3 | ASTM D2216-10 REDLINE | Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass | 2010-07-01 | 구판 |
4 | ASTM D2216-10 | Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass | 2010-07-01 | 구판 |
5 | ASTM D2216-05 | Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass | 2005-03-01 | 구판 |
6 | ASTM D2216-98 | Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass | 1998-02-10 | 구판 |
7 | ASTM D2216-71 | Standard Method of Laboratory Determination Of Moisture Content Of Soil | 구판 |
관련상품이 존재하지 않습니다.
ASTM D7012-14e1 - Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures 상세보기
ASTM D6913/D6913M-17 - Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis 상세보기
ASTM D4015-15e1 - Standard Test Methods for Modulus and Damping of Soils by Fixed-Base Resonant Column Devices 상세보기
ASTM D2166/D2166M-16 - Standard Test Method for Unconfined Compressive Strength of Cohesive Soil 상세보기
ASTM D1883-16 - Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils 상세보기
IEC TS 63134:2020 - Active assisted living (AAL) use cases 상세보기
IEC 60034-5:2020 RLV - Rotating electrical machines - Part 5: Degrees of protection provided by the integral design of rotating electrical machines (IP code) - Classification 상세보기
KS B ISO TS 25740-1 - 에스컬레이터 및 무빙워크에 대한 안전요건 — 제1부: 세계공통 필수 안전요건(GESRs) 상세보기
KS B ISO TS 8100-21 - 승객 및 화물 운송용 엘리베이터 —제21부: 세계공통 필수안전요건(GESRs)을 충족하는 세계공통 안전 파라미터(GSPs) 상세보기
KS C IEC TS 62872 - 산업 시설과 스마트 그리드 사이의 산업 공정 측정, 제어 및 자동화 시스템 인터페이스 상세보기