관심표준 등록 : 표준업데이트 시 알림을 받을 수 있습니다.
PDF : 직접 파일 다운로드 및 인쇄 (마이페이지 확인)
PRINT : 인쇄본 우편발송, 2~3일 소요(PDF파일 미제공)
분야 | 04.08 : 토양, 석재 (Ⅰ) |
---|---|
적용범위 | 1.1 These test methods cover laboratory measurement of the hydraulic conductivity (also referred to as coefficient of permeability) of water-saturated porous materials with a flexible wall permeameter at temperatures between about 15 and 30°C (59 and 86°F). Temperatures outside this range may be used; however, the user would have to determine the specific gravity of mercury and RT (see 10.3) at those temperatures using data from Handbook of Chemistry and Physics. There are six alternate methods or hydraulic systems that may be used to measure the hydraulic conductivity. These hydraulic systems are as follows: 1.1.1 Method A—Constant Head 1.1.2 Method B—Falling Head, constant tailwater elevation 1.1.3 Method C—Falling Head, rising tailwater elevation 1.1.4 Method D—Constant Rate of Flow 1.1.5 Method E—Constant Volume–Constant Head (by mercury) 1.1.6 Method F—Constant Volume–Falling Head (by mercury), rising tailwater elevation 1.2 These test methods use water as the permeant liquid; see 4.3 and Section 6 on Reagents for water requirements. 1.3 These test methods may be utilized on all specimen types (intact, reconstituted, remolded, compacted, etc.) that have a hydraulic conductivity less than about 1 × 10−6 m/s (1 × 10−4 cm/s), providing the head loss requirements of 5.2.3 are met. For the constant-volume methods, the hydraulic conductivity typically has to be less than about 1 × 10−7 m/s. 1.3.1 If the hydraulic conductivity is greater than about 1 × 10−6 m/s, but not more than about 1 × 10−5 m/s; then the size of the hydraulic tubing needs to be increased along with the porosity of the porous end pieces. Other strategies, such as using higher viscosity fluid or properly decreasing the cross-sectional area of the test specimen, or both, may also be possible. The key criterion is that the requirements covered in Section 5 have to be met. 1.3.2 If the hydraulic conductivity is less than about 1 × 10−11 m/s, then standard hydraulic systems and temperature environments will typically not suffice. Strategies that may be possible when dealing with such impervious materials may include the following: (a) controlling the temperature more precisely, (b) adoption of unsteady state measurements by using high-accuracy equipment along with the rigorous analyses for determining the hydraulic parameters (this approach reduces testing duration according to Zhang et al. (1)2), and (c) shortening the length or enlarging the cross-sectional area, or both, of the test specimen (with consideration to specimen grain size (2)). Other approaches, such as use of higher hydraulic gradients, lower viscosity fluid, elimination of any possible chemical gradients and bacterial growth, and strict verification of leakage, may also be considered. 1.4 The hydraulic conductivity of materials with hydraulic conductivities greater than 1 × 10 −5 m/s may be determined by Test Method D2434. 1.5 All observed and calculated values shall conform to the guide for significant digits and rounding established in Practice D6026. 1.5.1 The procedures used to specify how data are collected, recorded, and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user's objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design. 1.6 This standard also contains a Hazards section (Section 7). 1.7 The time to perform this test depends on such items as the Method (A, B, C, D, E, or F) used, the initial degree of saturation of the test specimen and the hydraulic conductivity of the test specimen. The constant volume Methods (E and F) and Method D require the shortest period-of-time. Typically a test can be performed using Methods D, E, or F within two to three days. Methods A, B, and C take a longer period-of-time, from a few days to a few weeks depending on the hydraulic conductivity. Typically, about one week is required for hydraulic conductivities on the order of 1 × 10–9 m/s. The testing time is ultimately controlled by meeting the equilibrium criteria for each Method (see 9.5). 1.8 Units—The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are mathematical conversions, which are provided for information purposes only and are not considered standard, unless specifically stated as standard, such as 0.5 mm or 0.01 in. 1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. |
국제분류(ICS)코드 | 91.100.50 : 바인더. 밀봉재 |
페이지수 | 24 |
Edition | 16a |
No. | 표준번호 | 표준명 | 발행일 | 상태 |
---|---|---|---|---|
1 | ASTM D5084-24 | Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter | 2024-06-15 | 표준 |
2 | ASTM D5084-24 REDLINE | Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter | 2024-06-15 | 표준 |
3 | ASTM D5084-16a | Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter | 2016-08-15 | 구판 |
4 | ASTM D5084-16a REDLINE | Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter | 2016-08-15 | 구판 |
5 | ASTM D5084-16 | Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter | 2016-08-01 | 구판 |
6 | ASTM D5084-10 | Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter | 2010-07-01 | 구판 |
7 | ASTM D5084-03 | Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter | 2003-11-01 | 구판 |
8 | ASTM D5084-00 | Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter | 2000-09-10 | 구판 |
9 | ASTM D5084-00e1 | Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter | 2000-09-10 | 구판 |
관련상품이 존재하지 않습니다.
ASTM D4630-19 - Standard Test Method for Determining Transmissivity and Storage Coefficient of Low-Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test 상세보기
ASTM D4525-13e2 - Standard Test Method for Permeability of Rocks by Flowing Air 상세보기
ASTM D5607-16 - Standard Test Method for Performing Laboratory Direct Shear Strength Tests of Rock Specimens Under Constant Normal Force 상세보기
ASTM D5731-16 - Standard Test Method for Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications 상세보기
ASTM D6539-13 - Standard Test Method for Measurement of the Permeability of Unsaturated Porous Materials by Flowing Air 상세보기
IEC TS 63134:2020 - Active assisted living (AAL) use cases 상세보기
IEC 60034-5:2020 RLV - Rotating electrical machines - Part 5: Degrees of protection provided by the integral design of rotating electrical machines (IP code) - Classification 상세보기
KS B ISO TS 25740-1 - 에스컬레이터 및 무빙워크에 대한 안전요건 — 제1부: 세계공통 필수 안전요건(GESRs) 상세보기
KS B ISO TS 8100-21 - 승객 및 화물 운송용 엘리베이터 —제21부: 세계공통 필수안전요건(GESRs)을 충족하는 세계공통 안전 파라미터(GSPs) 상세보기
KS C IEC TS 62872 - 산업 시설과 스마트 그리드 사이의 산업 공정 측정, 제어 및 자동화 시스템 인터페이스 상세보기